(x – 1)n = 0, are intimately related in geometrical terms with perfectly symmetrical objects, based on each face representing an equilateral triangle.
So again, the unique numbers associated with (x – 1)3 =
0, are the triangular numbers 1, 3, 6, 10, 15, …
So for example, starting with one point (see Mathworld), when we
then place a point at the vertices of a symmetrical i.e. equilateral triangle,
we get 3 points in all.
Then when we place another point at the middle of each side (at
an equal distance from the end points) we get 6 points in all. Then with
additional points places at an equal distance from each other the total
increases in accordance with the numbers in our unique number sequence for (x –
1)3 = 0.
And again the unique numbers associated with (x – 1)4 =
0 are the tetrahedral numbers 1, 4, 10, 20, 35, … (Note that the nth term of
this sequence represents the sum of the first n terms of the previous
sequence)!
So again starting with 1 point (see again Mathworld the
successive terms in the series represent the equally placed points of the
fully symmetrical 3-dimensional solid i.e. tetrahedron (as the number of
equidistant points - initially with respect to each side of the object - increases.
Thus in the simplest case where we have one point at the
vertex of each side of the tetrahedron (with 4 sides in all), we have 4
points.
And we then extended this thinking more generally for n
dimensions in space so that the unique number sequences associated with (x – 1)n
= 0, represent the no. of equally spaced points for a “hyper”
tetrahedron in (n – 1) space dimensions.
And such a simplex “hyper” tetrahedron (containing n sides)
represents the least number of sides required to construct a fully symmetrical
object in (n – 1) space dimensions.
Now, as we have seen, all these number sequences are
intimately related to - what I refer to as - the Alt Zeta 2 function, which
uses the reciprocals of these number sequences, which in turn complements the
better known Zeta 1 (Riemann) function.
So again for example, the Zeta 1 (Riemann) function i.e. ζ(s),
where s = 2 is
1 + 1/22 + 1/32 + 1/42 + …. = 4/3 * 9/8 * 25/24 * … = π2/6.
And the individual terms of the Zeta 1 can then be expressed
in terms of infinite series based on representing the Alt Zeta 2 function.
For example the 1st term in the product over
primes expression above for ζ(2) is 4/3.
And when s = 2 with respect to the Zeta 1, n = 22 +
1 = 5 with respect to the Alt Zeta 2.
Therefore, the relevant Alt Zeta 2 expression represents the
(infinite) sum of reciprocal terms based on the unique number sequences
associated with (x – 1)5 = 0, i.e.
1 + 1/5 + 1/15 + 1/35 + 1/70 + … = 4/3.
So then the next term in the product over primes expression
for ζ(2) i.e. 9/8 now corresponds to the
infinite sum of reciprocals of the unique number sequences, where n = 32 +
1 = 10, i.e. (x – 1)10 = 0,
i.e. 1 + 1/10 + 1/55 + 1/220 + 1/715 + …
= 9/8, and so on.
So again each (individual) term of the Zeta 1 (Riemann)
function can be expressed in an ordered fashion, through the appropriate Alt Zeta 2 function. Though
the Alt Zeta 2 function is more directly related to the product over primes
expression of the Zeta 1 (Riemann) function (with s an integer > 1), it can
equally be associated with the sum over natural numbers expression (through the
subtraction of 1).
So for example the 2nd term of ζ1(2)
in the sum over natural numbers expression = 1/4. This can in turn be related
the Alt 2 expression (where n = s2 + 2 = 6).
So the infinite series of reciprocals based on the unique
number sequence associated with (x – 1)6 = 0, is
1 + 1/6 + 1/21 + 1/56 + 1/126 + … = 5/4.
And when we subtract 1 we obtain 1/4, which is the required
term in the Zeta 1 (Riemann) function.
However what is fascinating in this context is that the
denominator numbers associated with the Zeta 1 (Riemann) function can
themselves be directly related to fully symmetrical objects.
Thus in 2-dimensional space we have the square - as earlier the equilateral
triangle - as another
symmetrical object (with respect to angular rotation). (Again see Mathworld).
So again when s = 2, the denominator numbers associated with ζ1(2)
are 1, 4, 9, 16, 25, …
Starting with 1 point, we then move to the 2 dimensional
symmetrical object of the square. So when we place a point at each vertex of
the square we have 4 (i.e. 22) points in all.
And then when we start by placing 3 equidistant points on
each equidistant line of the square, the total number of points = 9 (i.e. 32).
When we place 4 equidistant points on each equidistant line
of the square, the total no. of points = 16 (i.e. 42).
And in general terms when we place s equidistant points on
each equidistant line of the square, the total no. of points = s2.
So what we have involved here in 2-dimensional space are the
successive denominator terms of
ζ1(2).
And then in 3-dimensional space for the symmetrical object
of the cube, we use the successive denominator terms of ζ1(3).
Thus starting with 1, the simplest case in 3 dimensions entails
placing a single point at each vertex of the cube. And the total no. of points
thereby involved = 8 (i.e. 23)..
And then when we place 3 equidistant points on each side and
line through the cube, the total no. of points = 27 (i.e. 33).
And in general terms when we place s equidistant points on each
equidistant line (outside and inside the cube) the total no. of points = s3.
Though impossible to properly visualise, we can then extend
this into 4 space dimensions to obtain a hypercube (i.e. tesseract) where we
now use the successive denominator terms of ζ1(4). So when we now
place a point at each vertex (i.e. 2 points at the end of each line) of the
tesseract, we obtain 16 (i.e. 24) in all.
And with 3 equidistant points on each line (outside and
inside the tesseract) we obtain 81 (i.e. 34) in all.
And in general terms for s equidistant points we obtain s4
in all.
And in even more general terms for s equidistant points with
respect to each line of the n-dimensional hyper cube in space, we obtain sn
points in all.
There is also an intimate connection here with the Zeta 2
function i.e. ζ2(s).
So for example where 2 = 1/2, the denominator terms i.e. 1,
4, 8 represent the simplest case of just one point at each vertex, where
starting with 1 point, the total no. of points involved as one moves from the
2-dimensional (4) to the 3-dimensional cube (8) to the 4-dimensional tesseract
(16) and so on into progressively higher dimensions.
No comments:
Post a Comment