e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …,
is a special case of
e = {1 + (1 + k)/1! + (1 + 2k)/2! + (1 + 3k)/3! + (1+ 4k)/4! + …}/(1 + k),
where k = 0.
So, when k = 1,
e = {1 + 2/1! + 3/2! + 4/3! + 5/4! + …}/2
And when for example k = 10,
e = {1 + 11/1! + 21/2! + 31/3! + 41/4! + …}/11
This relationship holds for all real values of k (including non-integers) except – 1.
The case of k = – 1 is fascinating as it suggests that,
e ={(1 + 0/1! – 1/2! – 2/3! – 3/4! – …)}/0
And the limiting value of the expression inside the brackets as the number of terms
n ⁓ ∞ = 0.
So in this case the suggested limiting value of 0/0 = e?
Then,
ex = x0/0! + x1/1! + x2/2! + x3/3! + x4/4! + …
So when x = 1,
e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …
And when x = 2,
e2 = 20/0! + 21/1! + 22/2! + 23/3! + 24/4! + …
Therefore, combining the two formulae,
e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …,
is a special case of,
ex(1 + 2k) = x0/0! + x1(1 + k)/1! + x2(1 + 2k)/2! + x3(1 + 3k)/3! + x4(1 + 4k)/4! + …
for all x where x = 1 and k = 0.
Then when k = 0,
e x = x0/0! + x1/1! + x2/2! + x3/3! + x4/4! + …
And when also x = 1,
e = 10 + 11/1! + 12/2! + 13/3! + 14/4! + …
However, if for example k = 2 and x = 2,
Then 5e2 = 10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …
e 2 = {10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …}/5
so that,
e = [{10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …}/5]1/2
No comments:
Post a Comment