Tuesday, September 7, 2021

Generalised Formulae for e

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …,

is a special case of

e = {1 + (1 + k)/1! + (1 + 2k)/2! + (1 + 3k)/3! + (1+ 4k)/4! + …}/(1 + k),

where k = 0.


So, when k = 1,

e = {1 + 2/1! + 3/2! + 4/3! + 5/4! + …}/2


And when for example k = 10,

e = {1 + 11/1! + 21/2! + 31/3! + 41/4! + …}/11

This relationship holds for all real values of k (including non-integers) except – 1.

 

The case of k = – 1 is fascinating as it suggests that,

e ={(1 + 0/1! – 1/2! – 2/3! – 3/4! – …)}/0

And the limiting value of the expression inside the brackets as the number of terms

n ⁓ ∞ = 0.

So in this case the suggested limiting value of 0/0 = e?

 

Then,

ex = x0/0! + x1/1! + x2/2! + x3/3! + x4/4! + …

So when x = 1,

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …

 

And when x = 2,

e2 = 20/0! + 21/1! + 22/2! + 23/3! + 24/4! + …

 

Therefore, combining the two formulae,

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + …,

is a special case of,

ex(1 + 2k) = x0/0! + x1(1 + k)/1! + x2(1 + 2k)/2! + x3(1 + 3k)/3! + x4(1 + 4k)/4! + …

for all x where x = 1 and k = 0.


Then when k = 0,

e x = x0/0! + x1/1! + x2/2! + x3/3! + x4/4! + …


And when also x = 1,

e = 10 + 11/1! + 12/2! + 13/3! + 14/4! + …


However, if for example k = 2 and x = 2,

Then 5e2 = 10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …

e 2 = {10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …}/5

so that,

e = [{10/0! + (3*21)/1! + (5*22)/2! + (7*23)/3! + (9*24)//4! + …}/5]1/2

No comments:

Post a Comment